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ABSTRACT: Ten years, 16 fully coupled global models, and hundreds of research papers later, the 
North American Multimodel Ensemble (NMME) monthly-to-seasonal prediction system is looking 
ahead to its second decade. The NMME comprises both real-time, initialized predictions and a 
substantial research database; both retrospective and real-time forecasts are archived and freely 
available for research and development. Many U.S.-based and international entities, both private 
and public, use NMME data for regional or otherwise tailored forecasts. The system’s built-in 
evolution, with new models gradually replacing older ones, has been demonstrated to gradually 
improve the skill of 2-m temperature and sea surface temperature, although precipitation predic-
tion remains a difficult problem. This paper reviews some of the NMME-based contributions to 
seasonal climate prediction research and applications, progress on scientific understanding of 
seasonal prediction and multimodel ensembles, and new techniques. Several prediction-oriented 
aspects are explored, including model representation of observed trends and the underprediction 
of below-average temperature. We discuss potential new directions, such as higher-resolution 
models, hybrid statistical–dynamical techniques, or prediction of environmental hazards such as 
coastal flooding and the risk of mosquito-borne diseases.
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I n September of 2010, the National Research Council recommended that “multi-model 
ensemble (MME) forecast strategies should be pursued” to improve the building blocks of 
intraseasonal-to-interannual prediction (National Research Council 2010). On 8 August 

2011, the first monthly predictions from the National Multimodel Ensemble (NMME), as it was 
called at the time, were provided to NOAA’s operational climate prediction forecasters and to 
the public. The NMME of 2011 captured all available U.S. coupled global climate models—
seven models from five operational and research centers. Implementation requirements were 
designed to optimize the information provided to forecasters at NOAA’s Climate Prediction 
Center (CPC), while all forecast data would be published in real time for research, development, 
and prediction. The NMME (now the North American Multimodel Ensemble; Kirtman et al. 
2014) turned 10 years old in 2021, and we mark this milestone by looking back at some of 
the scientific contributions of the project and forward to future directions.

The NMME protocol designed in 2011 established requirements for horizontal resolu-
tion (1° longitude 3 1° latitude), number of lead months (at least 9), retrospective forecasts 
(1982–2010), and delivery date (eighth of each month). The retrospective forecasts, also called 
hindcasts, were required to use the same version and initialization as the real-time forecast 
model version, allowing for analysis of model forecast characteristics and correction of sys-
tematic bias. Also specified was that the monthly-mean forecast variables—2-m temperature,  
precipitation rate, and sea surface temperature—were provided as total fields, i.e., not anoma-
lies, so that the forecast users could apply bias correction as they found appropriate. Beyond 
this, all details of the models were left up to the modeling centers, including model physics, 
initialization and ensembling strategies, and native resolution.

This relatively spare protocol encouraged as much model diversity as possible, while 
minimizing the technical burden on CPC and other forecast data users. The modeling centers 
were able to run retrospective forecasts during the spring and early summer of 2011, and the 
first real-time forecasts were provided in early August. That first ensemble comprised seven 
models from five centers: two each from NOAA’s National Centers for Environmental Predic-
tion (NCEP) and the International Research Institute for Climate and Society (IRI) at Columbia 
University, and one each from NASA’s Global Modeling and Assimilation Office (GMAO), the 
University of Miami, and NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL). See Table 1 
for model details and active years. CPC’s NMME website published images for each model’s 
anomaly forecasts and the multimodel ensemble-mean anomaly, while the IRI Data Library 
made all forecast data available to researchers and the public.

In August of 2012, the IRI models were retired, and Environment and Climate Change 
Canada (ECCC) joined the NMME, which was renamed the North American Multimodel  
Ensemble. To expedite the transmission of some retrospective forecast data, ECCC copied the 
data for the two models that form their Canadian Seasonal-to-Interannual Prediction System 
(CanSIPS; Merryfield et al. 2013) onto surplused hard drives and shipped them to NCAR. 
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The resulting six-model NMME configuration (NCEP retired CFSv1 in the fall of 2012) led 
to a substantial increase in hindcast global-averaged land and ocean surface temperature 
anomaly correlation over the 2011 model suite, despite having fewer ensemble members 
overall (Becker et al. 2020).

Over the next 8 years, most models were upgraded to newer versions by the modeling 
centers, and, by 2021, only NCEP’s CFSv2 continued from the original suite. Individual 

Table 1. All models that have participated in the North American Multimodel Ensemble (NMME) 2011–21. “Years active” indi-
cates the years during which that model provided real-time forecast data to the NMME, while “hindcast years (No. ens. mems)” 
shows the total number of years of retrospective forecasts and the number of ensemble members. In the case of models with 
differing ensemble size between the hindcast and real time, the real-time size is denoted with “RT.” The “arrangement of 
 ensemble members” column indicates the date and time of initialization of each ensemble member.

Model
Years  
active

Hindcast years  
(No. ens. mems)

Arrangement 
of ensemble 

 members
Leads 

(months)
Atmo-
sphere Ocean Reference

IRI-ECHAM4f 2011–12 1982–2010 (12) All first of the month 
0000 UTC

0–7 T42L19 MOM3L25,  
1.5° 3 0.5°

DeWitt (2005)

IRI-ECHAM4a 2011–12 1982–2010 (12) All first of the month 
0000 UTC

0–7 T42L19 MOM3L25,  
1.5° 3 0.5°

DeWitt (2005)

NCEP-CFSv1 2011–12 1982–2010 (15) First 0000 UTC 6 
2 days, twenty-first 
0000 UTC 6 2 days, 
eleventh 0000 UTC 

6 2 days

0–8 T62L64 MOM3L40, 
0.30°Eq

Saha et al. 
(2006)

NCAR-RSMAS-
CCSM3

2011–14 1982–2010 (6) All first of the month 
0000 UTC

0–11 T85L26 POPL42, 0.3°Eq Kirtman and 
Min (2009)

NASA-GMAO-
GEOS5

2011–17 1982–2010 (11) 4 members/5 days; 
7 last days of last 

month

0–9 GEOS5 
AGCM, 1° 3 

1.25°, L72

MOM4, L40, 
0.5°Eq

Borovikov et al. 
(2019)

GFDL-CM2.1 2011–20 1982–2010 (10) All first of the month 
0000 UTC

0–11 CM2.1, 2° 3 
2.5°, L24

MOM4, L50, 
0.3°Eq

Delworth et 
al.(2006)

NCEP-CFSv2 2011–pres-
ent

1982–2010  
(24; 28 Nov)

4 members (0000, 
0600, 1200, 1800 

UTC) every fifth day

0–9 GFS, 
T126L64

MOM4, L40, 
0.25°Eq

Saha et al. 
(2014)

ECCC-CanCM3 
“CMC1”

2012–19 1982–2011 (10) All first of the month 
0000 UTC

0–11 CanAM3, 
T63L31

CanOM4, L40, 
0.94°Eq

Merryfield et al. 
(2013)

ECCC-CanCM4 
“CMC2”

2012–19 1982–2011 (10) All first of the month 
0000 UTC

0–11 CanAM4, 
T63L35

CanOM4, L40, 
0.94°Eq

Merryfield et al. 
(2013)

GFDL-CM2.5 
“FLOR”

2014–20 1982–2013 (24) All first of the month 
0000 UTC

0–11 CM2.5, 
C18L32, 
50km

MOM5, L50, 
0.30°Eq, 1° 

Polar1.5

Vecchi et al. 
(2014)

NCAR-SMAS-
CCSM4

2014– 
present

1982–2013 (10) All first of the month 
0000 UTC

0–11 CAM4, 0.9° 
3 1.25°, L26

POPL60, 0.25°Eq Infanti and Kirt-
man (2016)

NCAR-CESM 2015– 
(research 

only)

1982–2010 (10) All first of the month 
0000 UTC

0–11 0.9 3 1.25° 
L72

POPL60, 0.25°Eq Small et al. 
(2014)

NASA-GMAO-
GEOSS2S

2018– 
present

1982–2017  
(4; 10 RT)

1 member every 5 
days

0–9 GEOS5 
AGCM, 0.5°, 

L72

MOM5, L40, 
0.5°Eq

Molod et al. 
(2020)

ECCC-CanCM4i 2019– 
present

1982–2018 (10) All first of the month 
0000 UTC

0–11 CanAM4, 
T63L31

CanOM4, L40, 
0.94°Eq

Merryfield et al. 
(2013)

ECCC-GEM-NEMO 2019– 
present

1982–2018 (10) All first of the month 
0000 UTC

0–11 GEM, 256 3 
128

NEMO 1° 3 1°, 
1/3° Eq

Lin et al. (2020)

GFDL-SPEAR 2021– 
present

1991–2020 (15; 30 
RT)

All first of the month 
0000 UTC

0–11 AM4.0, 0.5°, 
33 levels

MOM6, 1°, tropi-
cal refinement to 
0.3°, 75 levels, 
hybrid vertical 

coordinate

Delworth et al. 
(2020)
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NMME in a prediction application: The NextGen approach
NMME seasonal prediction information is employed by the IRI and partners via the NextGen methodology, a systematic general approach 
for codesigning, implementing, producing, and verifying objective forecasts at multiple time scales (Muñoz et al. 2019, 2020; WMO 2020). 
The approach starts with co-identifying with decision-makers and local experts their concrete demand, which defines the variable(s) to 
predict. A diagnostic analysis is then conducted to help identify the best observed and modeled predictor variables, including both climate 
and nonclimate factors. As part of the design and implementation of the NextGen forecast system, past model performance is assessed 
via a statistical and physical-process-based evaluation, helping inform how to best conduct model calibration and ensemble design. The 
set of predictions produced by the system includes the full range of possible outcomes of the variable (i.e., its entire probability density 
function, as opposed to just tercile-based predictions), such that decision-makers can obtain tailored forecasts for any particular threshold 
of interest, and thus trigger the precise set of actions required.

The NextGen methodology is both general and demand oriented, and has been applied to a wide variety of cases beyond forecasting 
climate variables such as rainfall or temperature. The range of applications include predictions of environmental suitability for transmis-
sion of Aedes-borne diseases such as dengue, Zika or chikungunya (Muñoz et al. 2017, 2020) acute undernutrition for children under 5 
years old (Romero et al. 2020; White et al. 2022), coffee yield (Pons et al. 2021), and human migration (Muñoz et al. 2019).

To illustrate the approach with a concrete example using NMME model output, consider the NextGen system for Aedes-borne diseases’ 
environmental suitability (AeDES; Muñoz et al. 2020; see Fig. SB1), developed for a geographical domain encompassing North America, 
Central America, northern South America, and the Caribbean. Work led by the IRI and the Pan-American Health Organization (PAHO)/
World Health Organization (WHO) helped identify environmental suitability for disease transmission as the key variable to monitor and 
forecast (Muñoz et al. 2020).

AeDES follows a super-ensemble approach, involving four different environmental suitability models that require both entoepidemio-
logical parameters (i.e., transmission-sensitive information involving both the mosquito and the diseases, such as mosquito biting rate, 
mosquito egg production rate, human susceptibility, and infectious rates; see Muñoz et al. 2020) and environmental variables (such as 
rainfall, temperature, and relative humidity; see Muñoz et al. 2020). AeDES assimilates 2-m temperature forecasts from the NMME, forc-
ing each one of the four environmental suitability models with 96 NMME climate realizations (i.e., a total of 384 realizations). Presently, 
1982–2010 hindcasts for each season are used to calibrate each one of the realizations independently, before computing the ensemble; 
hence, a total of 4,608 (4 environmental suitability models times 12 initializations times 96 climate model members) 29-yr-long seasonal 
hindcasts are involved in the calibration and probabilistic forecast production process. The AeDES system uses a pattern-based calibra-
tion approach that at the same time conducts a downscaling and corrects for magnitude and spatial pattern biases, such that the final 
forecasts reproduce the monitored environmental suitability. For additional technical details, see Muñoz et al. (2020).

This type of NextGen forecast system helps the decision-making process by directly providing information on the actual variable used 
to trigger an action. For example, the allocation of financial and human resources by PAHO/WHO to locations where a risk of disease 
transmission is expected to be higher (or lower) than normal, depends on the probability of exceeding (or not) a certain value in the 
risk-related variable, i.e., environmental suitability in the case of the AeDES system.

Fig. SB1. Example of the NextGen forecast system from the International Research Institute for Climate 
and Society’s website.
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model improvements were demonstrated by their developers (e.g., Lin et al. 2020; Molod 
et al. 2020; Wittenberg et al. 2018), while the assumption that improved models lead to 
increased multimodel prediction skill (Yoo and Kang 2005) was tested in Becker et al. 
(2020). It was found that each evolution of the model suite subsequently increased seasonal 
forecast skill of land and ocean surface temperature fields, while precipitation skill has 
shown only very small improvement overall. In Becker et al. (2020), it was suggested that 
more successful prediction of seasonal precipitation may require a different approach, such 
as higher-resolution models.

The data from all contributing models have been retained at the IRI Data Library 
 (Blumenthal et al. 2014), creating an extensive database of at least 16 global coupled models, 
with at least 30 years of forecast data each, for research and development. A description of 
NMME data availability, access, and tools is provided in the appendix.

Multimodel ensembles.  Multimodel ensembles were demonstrated to improve accuracy 
and quality over single-model ensemble forecasts by the international projects PROVOST 
 (Doblas-Reyes et al. 2000), DEMETER (Palmer et al. 2004), and ENSEMBLES (Weisheimer 
et  al. 2009). In brief, the value of MME stems from the enhancement of signal, cancella-
tion of errors, and the improved ability to characterize the uncertainty of model forecasts 
( Doblas-Reyes et al. 2005; Hagedorn et al. 2005; Smith et al. 2013). Earlier studies of the 
NMME have confirmed that both the large total ensemble size—real-time NMME predictions 
include approximately 100 ensemble members—and the diversity of models results in im-
proved forecast reliability and probabilistic skill scores when compared to smaller ensem-
bles or single-model forecasts (Becker and van den Dool 2016; Tippett et al. 2019).

From a practical perspective, a multimodel ensemble provides continuity of operations if 
one or more models are unavailable or in error. While in an ideal world this situation would 
never occur, in this world, computer issues, government shutdowns, and other vagaries have 
occasionally—albeit infrequently—created obstacles for individual model data delivery. A 
few months in the past 10 years have found the NMME short of one model on the forecast 
deadline, but the system was still able to provide forecast data on time from the remaining 
models, never fewer than five. Forecast information from the NMME has become critical to 
seasonal prediction operations at NOAA, the U.S. Air Force, and many other centers, includ-
ing private-sector entities, making reliable availability essential.

Another benefit of a closely monitored multimodel ensemble is the identification and  
diagnosis of potential model errors. One such error was identified in 2016 by users of NMME El 
Niño–Southern Oscillation (ENSO) predictions. NMME ENSO information has been available 
since 2011 in the form of Niño-3.4 “plumes,” where the long-lead prediction of the average  
monthly or seasonal sea surface temperature anomaly (SSTA) in the ENSO monitoring  
Niño-3.4 region is shown for each ensemble member, the individual ensemble means, and 
the multimodel ensemble mean. NMME in ENSO prediction will be discussed in more detail 
in the next section.

Following the strong El Niño event of 2015/16, there was much interest in whether La 
Niña conditions would develop (L’Heureux et al. 2017). The NMME forecast initialized in 
early March 2016 showed that most models predicted a continued steep decline in Niño-3.4 
SSTA, with ENSO-neutral or La Niña developing by the summer (Fig. 1). However, two mod-
els predicted only a slight decrease, followed by continued El Niño. El Niño rarely occurs 
in consecutive years (An et al. 2020; Choi et al. 2013), leading forecasters to question these 
two models’ predictions. Key to the investigation was that both models, NCEP-CFSv2 and  
COLA-RSMAS-CCSM4, were initialized using the same reanalysis, CFSR (Saha et al. 2014), 
while the other models were not. Upon inspection, large erroneous cold subsurface anomalies 
in the tropical Atlantic were found in the CFSR, and NCEP’s Environmental Modeling Center 
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devised a correction that returned the reanalysis, and consequently the Niño-3.4 prediction, 
to a realistic state (http://cfs.ncep.noaa.gov/pub/raid0/Briefing.pptx). This fix has been implemented 
on an ongoing, as-needed basis by NOAA’s Environmental Modeling Center.

The NMME in practice
The most established application of NMME is the seasonal prediction of ENSO and North 
American temperature and precipitation, but NMME’s global forecast and straightforward 
availability has led to the development of specific regional predictions, hybrid statistical– 
dynamical models, and many other applications. The NMME is frequently used as a baseline 
for prediction skill by teams developing new or improved prediction systems (e.g., Cohen  
et al. 2019; Ding et al. 2019; Dias et al. 2019).

ENSO prediction.  NMME has become an integral component of NOAA’s ENSO prediction 
(L’Heureux et al. 2019, 2020). In 2013, the NMME providers team agreed to modify the NMME 
protocol to support a forecast delivery date of close of business on the sixth of each month, 
in order to better support NOAA’s ENSO outlook team. NMME predictions provided to the 
ENSO team include the SST anomaly in the Niño-3.4 region—the Niño-3.4 index—along with 
the probability that this index will be . 0.5°C (El Niño threshold), ,20.5°C (La Niña thresh-
old), or between (neutral conditions). Other Niño indexes are of greater relevance for other 
regions; for example, the Instituto Geofisico del Peru creates NMME plume forecasts for 
the Niño-1 1 2 region and includes them in their monthly technical briefings, archived at  
https://repositorio.igp.gob.pe/.

ENSO is highly predictable (in the context of seasonal climate prediction) and NMME 
prediction of the Niño-3.4 index is overall skillful and reliable (Becker et al. 2014; Becker 
and van den Dool 2016; L’Heureux et al. 2019). However, failed ENSO forecasts are particu-
larly notable, with a potentially large effect on the accuracy of long-lead seasonal outlooks 
(Tippett et al. 2020), and prediction of ENSO diversity and impacts is still challenging 
(e.g., Capotondi et al. 2015; Infanti and Kirtman 2016). Several studies have examined the 
NMME’s ENSO prediction in detail, including both deterministic and probabilistic formats 
(Barnston et al. 2019; Tippett et al. 2019; respectively). Both of these studies find that the 
NMME is unable to overcome the well-known “spring predictability barrier,” with forecasts 
for May–September targets substantially less skillful than for other times of the year (see 

Fig. 1. NMME Niño-3.4 monthly sea surface temperature anomaly forecast initialized in (left) March 2016 and (right) April 
2016, reconstructed from seven NMME models: COLA-RSMAS-CCSM4, CanCM4i, GEM-NEMO, GFDL-CM2.1, GFDL-FLORb01, 
NASA-GEOSS2S, and NCEP-CFSv2. Anomalies are based on a 1986–2015 climatology. Colored lines indicate individual 
model ensemble means. Black line in the forecast period indicates the equally weighted multimodel ensemble mean. 
 Observations from NOAA’s Optimal Interpolation SST (OISST; Reynolds et al. 2002).
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also Larson and Kirtman 2017). However, Tippett et al. (2019) find that, using NMME, ENSO 
forecasts can be expanded from three categories (probabilities of El Niño, neutral, and La 
Niña using 20.5°C and 10.5°C cutoffs) to seven categories (21.5°C, 21.0°C, 20.5°C, 10.5°C, 
11.0°C, and 11.5°C), without a loss of skill and reliability. L’Heureux et al. (2019) leverage 
this finding, paving the way for an application that provides stakeholders the probability 
of Niño-3.4 index values of various amplitudes. This is useful because the flavors of El Niño 
are tied to the amplitude of Niño-3.4 (Capotondi et al. 2015), and, further, stronger ENSO 
events result in enhanced predictability (Chen and Kumar 2015; Hu et al. 2019). Further-
more, providing more categories or even the entire range of all possible outcomes (via the 
probability density function) has shown to be useful for a wide variety of decision-makers 
(e.g., WMO 2020; Muñoz et al. 2019, 2020).

Despite an overall substantial improvement in NMME prediction of SST over the past 10 
years, the skill of long-lead (several months into the future) prediction of SST in the ENSO 
regions has decreased (Becker et al. 2020). A couple of studies have noted that the NMME 
does not represent the observed trend in SST in the central tropical Pacific, showing more 
warming than has been observed, an effect that intensifies with forecast lead (Barnston et al. 
2019; Shin and Huang 2019). We have updated these studies with the more recent models, 
all of which have 39 years of retrospective and real-time data, with observed trend shown for 
ERSSTv5 (Huang et al. 2017) (Fig. 2). Trend is calculated for individual leads from all initial 
conditions. “Forecast lead” refers to the number of months into the future from initialization; 
by NMME convention, this is denoted by “lead-0.5, lead-1.5,” etc. (e.g., Kirtman et al. 2014). 
Lead-0.5, the first forecast month, is the month in which the forecasts are initialized—the 
January lead-0.5 forecast is for the January average, the January lead-1.5 forecast is for the 
February average, and so on.

We see an overly strong tropical Pacific warming trend to varying degrees, especially in the 
central and eastern Pacific, in the longer leads of all models. (With the exception of CFSv2, 
and, to a lesser extent, CCSM4, the observed trend is represented well at the 0.5-month lead.) 
While this overly strong warming trend may play a part in the decrease in prediction skill 
at longer leads in newer models, more investigation would be required to fully diagnose the 
causes of this decrease.

Seasonal prediction. While the NMME’s initial purpose was to inform NOAA’s seasonal U.S. 
outlooks, the global fields have been used by many researchers and prediction centers across 
the world. A sample of these regional predictions include precipitation and/or temperature 
in northeast Brazil, Iran, Israel, the Sahel, and the Indian summer monsoon (da Rocha et al. 
2021; Najafi et al. 2021; Givati et al. 2017; Giannini et al. 2020; Pillai et al. 2021; respectively). 
Statistically downscaled NMME predictions, and predictions aggregated to watershed or 
basin scales, have been explored for regions of the United States by several groups, poten-
tially providing customized information beyond that available from a national or global map 
(Baker et al. 2019; Barbero et al. 2017; Bolinger et al. 2017).

Several years of operation provides an opportunity to assess various strengths and weak-
nesses of the system, as well as its performance in real time, and to explore the NMME 
representation of some observed features from the past four decades. The NMME team and 
seasonal forecasters, in paying close attention to the NMME forecasts every month for 10 
years, have observed that the real-time NMME rarely accurately predicts below-average  
winter temperatures in North America (CPC staff 2019, personal communication). In fact, we 
suspected that the real-time NMME simply rarely predicts below-average North American 
winter temperatures at all. In a warming world, below-average winter months are rarer than 
above average, but do still occur, and can be very consequential for energy use, health, and 
many other factors (e.g., Trenary et al. 2015; Wolter et al. 1999).
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To investigate this apparent tendency to underpredict below-average events, we examined 
the frequency of prediction of monthly 2-m temperature at a 1-month lead during the real-time 
period of 2011–20, using the multimodel ensemble mean of the eight models with complete 
1982–2020 records (Figs. 3 and 4). Above average is here defined as the upper tercile: more than 
0.431 standard deviation (sd) above the 1982–2010 mean. The below-average tercile is cooler 
than 20.431 sd. Ensemble-mean forecasts are calculated for each individual model using its own 
1982–2010 climatology, thus bias corrected for systematic error in the mean and the standard 
deviation. “Lead-1.5” is the first month following the initial month, e.g., the February forecast 
made in early January. The NOAA Climate Prediction Center’s monthly forecast at a 1-month lead 
is one of the operational outlooks that is informed by NMME output. While the instigation was 
temperature during winter months, we included all months in the analysis.

The GHCN1CAMS gridded observed dataset was used for comparison (Fan and van den 
Dool 2008). GHCN1CAMS, which combines two large individual datasets of station obser-
vations, is one of several verification records in use by NOAA’s Climate Prediction Center. It 
has a native resolution of 0.5° longitude 3 0.5° latitude and has been interpolated to match 
the NMME grid. The standard deviation of observed temperatures was found for each month 

Fig. 2. The 1982–2020 trend (°C) in monthly mean sea surface temperature in the NMME models and observations. Models 
comprise COLA-RSMAS-CCSM4, CanCM4i, GEM-NEMO, GFDL-CM2.1, GFDL-FLORa06 and FLORb01, NASA-GEOSS2S, and 
NCEP-CFSv2; as the trends in GFDL-FLORa06 and FLORb01 are nearly identical, only FLORb01 is shown here. Observed 
trend is from ERSSTv5 data. The forecast lead is denoted in the upper-left corner of each panel: “0.5” indicates the first 
forecast month, “4.5” the fifth, and “8.5” the ninth.
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using the 1982–2010 period, at each grid point, and used to determine the tercile thresholds 
as described above. The frequency of above average during the real-time forecast period of 
2011–20 was then calculated as how many gridpoint observed temperatures exceeded the 
upper tercile threshold versus the total number of forecasts.

Counting each grid point’s lead-1.5, 1-month-average, multimodel ensemble-mean forecast dur-
ing 2011–21 as a single forecast, overall, 65% of forecasts predicted above-average temperature, 
and 5% below average. In contrast, above average was observed to have occurred 48% of the time 
and below average 22% during this same period (Fig. 3). Since average is defined as 1982–2010, 
it is expected that, in a warming world, above-average temperature would occur more often than 
below average during 2011–20, both in observations and predictions. However, the underpredic-
tion of below-average temperature by the NMME is found to be a systematic issue. This pattern 
is strongest for warm-season months, when the NMME virtually never predicts below average in 
the real-time period. There is some spatial similarity between the forecast and observed frequen-
cies, with the southwest United States experiencing the highest frequency of both observed and 
forecast above-average temperature, but this relationship is not strong overall (Fig. 4).

A full diagnosis of the real-time overprediction of above-average 2-m temperature (t2m) is 
beyond the scope of this article, but one possible contributor to the forecast bias is an overly 
strong temperature trend in the NMME over much of the United States (Fig. 5). This tendency, 
especially over the eastern United States, was noted and explored by Meehl et al. (2012) using 
CCSM3, one of the earliest NMME models, and continues to be a difficulty for more recent 
models. North-central Asia is the only other region with a much stronger trend in NMME than 
observed; overall, NMME models tend to produce a slightly weaker global land t2m trend 
than observed (Krakauer 2019).

Extended applications. The free, real-time availability of global data from the NMME has led 
to many applications beyond seasonal temperature and precipitation prediction for North 
America. The NMME has become a valuable educational resource for the capacity-build-
ing efforts of NOAA’s International Desks (W. Thiaw 2020, personal communication). The  
International Desks are a training organization with the goal of “preparing an international 
cadre of meteorologists who can face the challenges of a modern weather and climate forecast 
office” (ncep.noaa.gov/intldesk/). The International Desks hosted at the NOAA Climate Prediction  

Fig. 3. (left) Frequency of prediction of above-average (upper tercile) and below-average (lower tercile) monthly mean 
land surface temperature anomaly in North America during the NMME real-time period of 2011–20; (right) observed fre-
quency of the same from GHCN1CAMS. Above-average and below-average thresholds are based on 1982–2010. NMME 
prediction is shown for a 1.5-month lead and is the multimodel ensemble-mean anomaly of eight equally weighted mod-
els: COLA-RSMAS-CCSM4, CanCM4i, GEM-NEMO, GFDL-CM2.1, GFDL-FLORa06 and FLORb01, NASA-GEOSS2S, and NCEP-
CFSv2. Each gridpoint forecast is treated as an individual forecast for the frequencies computed here.
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Center created NMME-based seasonal forecast tools for Africa (Fig. 6) and other regions of 
special interest (Thiaw and Kumar 2015), and publish real-time forecasts in an accessible 
format for use with the IRI’s Climate Predictability Tool (CPT; Mason et al. 2021; see appen-
dix). Visitors enrolled in the International Desks climate prediction training program are 
introduced to probabilistic ensemble prediction using the NMME.

Many teams have used NMME global monthly temperature, precipitation, and/or SST to 
force specialized models. Examples include prediction of streamflow in the Nile (Eldardiry 
and Hossain 2021); climatic suitability for invasive insects (Barker et al. 2020) and malaria 
in South Africa (Landman et al. 2020); mosquito-borne diseases in North America, Central 
America, and the Caribbean and South America (Muñoz et al. 2017, 2020; see also sidebar); 
coffee yield in Central America (Pons et al. 2021); hydropower planning (Koppa et al. 2019); 
model-analog ENSO prediction (Ding et al. 2019); and global seasonal fire activity (Turco 
et al. 2018).

Hybrid dynamical–statistical prediction systems combine dynamical model data with 
statistical relationships to predict specific quantities. An NMME-based hybrid model for the 
prediction of the seasonal number and accumulated cyclone energy of Atlantic hurricanes 
was developed by D. S. Harnos et al. (2019) and is currently in use to inform NOAA’s seasonal 
Atlantic hurricane outlook. This system employs NMME tropical Atlantic SST and wind 
shear—wind shear is provided by a subset of the modeling centers to NOAA for this applica-
tion. NMME models from GFDL are also used in hybrid systems to predict North Atlantic and 
North Pacific tropical cyclone activity (Villarini et al. 2019; Zhang and Villarini 2019).

NMME-based hybrid systems are used for several hydrological applications. Teams have de-
signed drought prediction systems, including regional techniques for China, the United States, 

Fig. 4. Frequency of 1.5-month lead prediction of (a) below-average and (b) above-average monthly mean surface tem-
perature anomaly by the NMME, aggregated over all 12 initial conditions, for the model suite described in Fig. 3. The 
(c),(d) corresponding observed frequency from GHCN1CAMS.
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and Europe (Ma et al. 2019; Madadgar et al. 2016; Thober et al. 2015), a global approach (Mo and 
Lyon 2015), and a technique for categorical drought prediction (Hao et al. 2017). Slater et al. (2019) 
and Slater and Villarini (2018) developed NMME-based hybrid streamflow predictions for the 
U.S. Midwest, and NASA’s hydrological forecasting and analysis system (NHyFAS), developed to 
support the U.S. Agency for International Development’s Famine Early Warning Systems network, 
employs NMME precipitation data as input (Arsenault et al. 2020) (Fig. 7).

Predictability and seasonal prediction research
Beyond prediction systems, teams using NMME data have made extensive contributions to our 
understanding of climate variability, predictability, and the interaction of climate variability 
on different time scales. New calibration and multimodel ensembling techniques provide 
valuable insight into model biases, potentially leading to improvements in future coupled 
models and, ultimately, better predictions.

Predictability, as opposed to prediction skill, is the extent to which a physical quantity in 
a chaotic system can be predicted, as small differences in initial states grow in time ( Lorenz 
1969, 1982). Predictability can be explored using ensembles, often through so-called  perfect 
model experiments, in which a single model run is taken as the verification, and the remain-
ing ensemble members are the prediction. Hence, the model is trying to predict an outcome 

Fig. 5. The 1982–2010 linear trend (°C yr21) in 2-m temperature in the (a) NMME 1.5-month lead 
monthly mean and (b) GHCN1CAMS monthly mean, and (c) the difference. NMME is the multi-
model mean as shown in Figs. 2 and 3.
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within its own world, negating the loss in skill that comes when the model’s physics and 
assimilated data do not perfectly match the real world. NMME provides the opportunity 
to estimate predictability as represented in several different models and the relationship 
between the results, perhaps getting closer to the “true” predictability (Becker et al. 2014; 
Pegion et al. 2019). Newman and Sardeshmukh (2017), using NMME and the linear inverse 
model, find that our current forecast capabilities for tropical SST may be nearing the limits 
of predictability, although Pegion et al. (2019) argue that perfect model predictability esti-
mates likely do not represent the upper limit of real-world predictability, due to model errors. 
A related method of estimating predictability that separates a field into its predictable and 
unpredictable components is employed with NMME to understand predictability of 200-hPa 
height (Z200) and ENSO (Jha et al. 2019; Kumar et al. 2017; respectively). Jha et al. (2019) use 
the NMME’s larger ensemble and more advanced models to confirm the results of an earlier 
study (Kumar et al. 2007) that the predictable component of Z200 is highly dependent on 
ENSO, while Kumar et al. (2017) find ENSO predictability varies seasonally, and note that 
their results also vary with model.

Understanding the sources of predictability and their representation in models is an-
other important area of study for climate prediction. Cash and Burls (2019) found that 

Fig. 6. Example map showing NMME probabilistic February–April-average 2-m temperature pre-
diction for Africa from NOAA’s International Desk. Colors indicate the probability of the most 
likely categorical outcome based on the six-model NMME from November 2021. See appendix for 
information on data download and other images. Details on forecast construction can be found 
in Becker and van den Dool (2016).
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ENSO explained less than 30% of the variance of wintertime precipitation in California, a 
relationship that was reasonably well reproduced by the entire ensemble, while Kumar and 
Chen (2020) found a range of explained variance of about 9%–25%. The multimodel mean, 
however, reduces noise and substantially overestimates the ENSO–California precipitation 
relationship. Larson and Pegion (2020) examine the oceanic heat content along the equato-
rial Pacific in springtime as a source of ENSO predictability, finding that the signal of this 
predictor is stronger in NMME than in nature. This may be why ENSO forecasts appear over-
confident when initialized in the spring, often providing a prediction based on the direction 
of the observed tendency (Tippett et al. 2020).

Some recent studies have focused on the sources of predictability for hydrological ex-
tremes. For example, U.S. drought prediction by the NMME has some useful skill, likely due 
to SST-linked predictability (Seager et al. 2020). On the other hand, U.S. flood prediction 
skill, which depends on low-predictability precipitation, is very limited (Neri et al. 2020). In 
Bangladesh, the NMME summer seasonal total rainfall actually has a stronger relationship 
to the observed number of dry and wet spells than to the observed seasonal total rainfall 
(Kelley et al. 2020).

NMME representation of persistent climate phenomena. The region of the North Atlantic 
Ocean to the south of Greenland has been exhibiting a surface temperature cooling trend, 
in stark contrast to the overall warming trend of most of the world’s oceans (Hansen et al. 
2010). The North Atlantic warming hole (NAWH) is associated with changes in the jet stream 
and circulation, with implications for global atmospheric circulation and weather (Gervais 
et al. 2019, 2020; Karnauskas et al. 2021; Woollings et al. 2012). The NAWH has been attrib-
uted to a combination of mechanisms, including a slowdown in the Atlantic meridional 
overturning circulation, changes in the subpolar gyre, cloud feedback, and teleconnections 
from the Indian Ocean (Caesar et al. 2018; Drijfhout et al. 2012; Hu and Fedorov 2020; Keil  
et al. 2020). NMME skillfully predicts SST in this region, with anomaly correlations above 
0.7 even at longer leads, independent of target season (Becker et al. 2014; see also skill maps 
on www.cpc.ncep.noaa.gov/products/NMME/). Also, substantial skill increases have been noted 
with later NMME model suites (Becker et al. 2020).

Fig. 7. Example map from NASA’s NHyFAS website (https://ldas.gsfc.nasa.gov/fldas/models/forecast) showing the root zone soil 
moisture prediction for Africa based on October initial conditions. This hybrid system uses NMME precipitation forecast 
data as input. Details on NHyFAS can be found in Arsenault et al. (2020).
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Fig. 8. Time series for area-averaged (50°–60°N, 55°–10°W; see Fig. 9) monthly mean SSTA from 
all model forecasts and all ensemble members, for (top) 0.5-month lead and (bottom) 5.5-month 
lead. The thin colored curve in the top panel indicate the forecast and the black curve is the ob-
servational estimates from OISST. Anomalies are calculated against the 1982–2020 mean; model 
suite comprises COLA-RSMAS-CCSM4, CanCM4i, GEM-NEMO, GFDL-CM2.1, GFDL-FLORa06 and 
FLORb01, NASA-GEOSS2S, and NCEP-CFSv2. Red and blue vertical dashed lines indicate averaging 
periods shown in Fig. 9.
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NMME’s overall successful prediction of NAWH, along with the NAWH’s interaction with 
storm tracks and weather, invites study of more specific characteristics, including predic-
tion of lower- and higher-frequency variability (Figs. 8, 9). Observed SSTA here is provided 
by NOAA’s Optimum Interpolation SST version 2 (OISST; Reynolds et al. 2002). Interannual 

Fig. 9. (top) North Atlantic SST warm period (1996–2009) minus cold period (1982–95) OISST ob-
servational estimates, (middle) NMME 0.5-month lead monthly mean prediction, and (bottom) 
NMME 5.5-month lead. NMME is the multimodel ensemble mean of the eight model ensemble 
means shown in Fig. 8, with equal weight per model. Anomalies are based on 1982–2020.
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variability is not well captured overall, with some models, notably CCSM4, worse than oth-
ers, even at the shortest lead (Fig. 8). CFSv2, which uses the same initial condition data as 
CCSM4 (CFSR), does not exhibit the same occasional large swings in monthly SSTA. Low-
frequency variability, represented here by averages of monthly mean SSTA over 1982–95 
(cooler period) and 1996–2009 (warmer period), is captured reasonably well, especially at 
the shortest lead, but with some success still at the 5.5-month lead (Figs. 8, 9). The challenge 
of retaining decadal signals in the context of seasonal prediction was previously addressed 
by Barnston and Lyon (2016), who found that NMME captured an observed decadal shift in 
rainfall patterns in the U.S. Southwest and was able to maintain the decadal shifts without 
regressing to the overall mean in short-lead seasonal forecasts. At longer leads, the amplitude 
of the decadal shift was still present, but substantially reduced, similar to the behavior of the 
NMME’s prediction of NAWH.

Bias correction and multimodel techniques. Basic systematic errors in a model’s mean 
prediction are usually removed by subtracting the model’s lead-dependent long-term 
mean from the forecast (Mason 2008; Becker et al. 2014). The resulting anomaly can be 
used as is, or the observed climatology can be added to the anomaly for a bias-corrected  
full field forecast. However, models may contain many biases beyond a shift in the  
mean climate, including inaccurate representation of the variance, skewness, and tele-
connection patterns. Many studies have identified calibration and other postprocessing 
methods to correct for systematic errors, improve reliability, and explore optimal model 
 consolidation.

Established bias correction methods such as canonical correlation analysis (CCA; Tippett 
et al. 2008), when applied to NMME rainfall forecasts in Africa, resulted in a substantial 
improvement in forecast skill across most of the individual models and in the multimodel 
mean (Thiaw and Kumar 2015). On the other hand, Barnston and Tippett (2017) found mixed 
results when applying CCA to 15 different regions. Ensemble regression, developed by Unger 
et al. (2009), was found to result in skill increases in South American precipitation forecasts 
(Osman et al. 2021). Chen et al. (2017) assesses NMME representation of ENSO teleconnection 
patterns in North America, and Strazzo et al. (2019) deploy a calibration, bridging, and merg-
ing (CBaM) method to statistically correct the teleconnection patterns to improve seasonal 
t2m and precipitation prediction.

Many researchers have used the NMME to explore more effective multimodel combina-
tion methods, challenging the conventional wisdom that effective weighting strategies are 
elusive (e.g., Hagedorn et al. 2005; Tebaldi and Knutti 2007). Bayesian updating methods 
are applied by Zhang et al. (2017) to NMME prediction of Niño-3.4, resulting in improved 
forecast skill over the equally weighted ensemble mean at almost all lead and target months, 
and by Slater et al. (2017) to European temperature and precipitation, resulting in a mix of 
improvements and loss of information. Khajehei et al. (2018) applies Bayesian postprocessing 
to NMME precipitation forecasts, again finding improved prediction. An optimal weighting 
system developed by Chen and van den Dool (2017) tests different methods of improving the 
performance of ridge regression, finding overall some improvement in precipitation forecasts 
from a non-equal-weight multimodel ensemble. Optimal NMME model weighting was also 
explored by Wanders and Wood (2016).

Novel bias correction and calibration methods with indications of improved prediction 
skill, reliability, or other assessment statistics, have been developed using NMME. These 
include a bias correction for precipitation based on dynamically linking it with temperature 
(Narapusetty et al. 2018) and experimental calibration methods applied to probabilistic ENSO 
prediction (Graziani et al. 2021). Van den Dool et al. (2017) discusses the probability anomaly 
correlation calibration technique, which is employed by the NMME probabilistic forecasts 
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shown on NOAA’s NMME website. These NMME forecasts, and those produced through IRI’s 
NextGen approach (see sidebar), calibrate each model’s forecast independently, before equally 
weighting the results in the multimodel ensemble.

Emerging and future directions
Daily resolution of the long-lead NMME hindcasts (1982–2010) is available for 2-m tempera-
ture, precipitation, and SST, as well as several additional fields for a limited set of models 
in the NMME Phase II database hosted at NCAR (see appendix). Real-time forecast data in 
daily resolution for five models are available at NOAA’s National Center for Environmental 
Information (NCEI; see appendix). To our knowledge, the real-time daily data are not widely 
employed by forecast centers, but several research studies using daily resolution from the 
Phase-II database have found potentially useful prediction capabilities, especially beyond 
mean temperature and precipitation. Examples include sudden stratospheric warmings, 
sea ice, and atmospheric rivers (Furtado et al. 2021; K. J. Harnos et al. 2019; Zhou and Kim 
2018; respectively). The 10-m winds from one NMME model, CCSM4, were used to force wave 
models by Bell and Kirtman (2019). Carrillo et al. (2018) find promise in the prediction of 
the beginning of the spring season using daily maximum and minimum temperature, but 
only after the application of a sophisticated postprocessing. They point out that the length 
of training period and ensemble size are both important for developing a skillful forecast for 
spring onset, a common theme among studies that use the Phase II database.

With the exception of ENSO prediction, most widely used NMME prediction applications 
are land based. However, recent years have seen an increase in the potential for oceanic 
applications, especially for fisheries-relevant fields such as marine ecosystems and marine 
heatwaves (Hervieux et al. 2019; Jacox et al. 2019). Sea level height prediction, relevant for 
coastal and island flooding, is also a topic of substantial current interest. Successful model 
prediction for tropical Pacific islands has been demonstrated by Widlansky et al. (2017), with 
potential application of NMME sea level height information, were it available. Khouakhi et al. 
(2019) finds high sea level along the U.S. West Coast is predicted up to 6 months in advance 
using ENSO forecasts from NMME.

Prediction systems developed using single seasonal climate models can be expanded, 
and potentially improved, by employing multimodel ensembles. Some existing systems are 
currently investigating expanding to use NMME inputs, including the Seasonal Probabilistic 
Outlook for Tornadoes (SPOTter; Lee et al. 2021), which was developed using CFSv2. These 
systems often employ nonstandard NMME fields which are furnished to researchers by the 
individual model providers, similar to how the wind shear information is provided by some of 
the models for the NMME-based Atlantic hurricane prediction. The NMME team is currently 
discussing adding a limited number of variables, including some ocean and pressure-level 
data, to the monthly prediction to facilitate this type of project. The list of mandatory vari-
ables was increased once before, in 2013, when 200-hPa geopotential height, maximum and 
minimum 2-m temperature, soil moisture, and runoff were added.

The three brief investigations into NMME predictions included earlier in this paper (un-
derprediction of below-average temperature, trends in tropical Pacific SST, and representa-
tion of the North Atlantic warming hole) all contain elements of trend analysis. The latter 
two illustrate that model trends can differ at longer leads from the initial state, although a 
thorough diagnosis of the origins of these trends is beyond the scope of this article. Some 
of the oldest NMME models did not capture greenhouse gas–related temperature trends at 
all, and prediction skill has substantially improved as these models were replaced (Becker 
et al. 2014, 2020). However, the impact on forecast quality from model trend biases is still 
unclear. While no trend-based calibration is currently applied to operational NMME predic-
tions, Shao et al. (2021a,b), using ECMWF’s SEAS5 model, propose a calibration method for 
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model representation of temperature trends that leads to improved forecast skill and reliability. 
Shao et al. (2021c) expands this methodology to trends in precipitation, finding substantial 
improvement to forecasts in some regions.

The discussion included here is by no means intended to be comprehensive. Rather, we 
hope that we have illustrated the variety of questions that could be explored in the NMME and 
other seasonal forecast systems. A clearer understanding of the strengths and weaknesses 
of the system could potentially contribute to forecasts of opportunity, periods of increased 
forecast confidence (e.g., Mariotti et al. 2020). Also, while the substantial number of bias 
correction, calibration, and weighting techniques developed using NMME hindcasts are an 
important contribution to understanding model biases—and potentially correcting them—it 
is unclear to what extent these methods can improve truly independent forecasts, that is, 
real-time forecasts for which we do not know the outcome ahead of time. The majority of them 
have been tested on the same sample used to develop them, a necessity given the limitations 
of climate prediction time scales, and even the most careful cross validation cannot create a 
truly independent forecast set over which to assess skill impacts. This concern was identified 
decades ago (e.g., Barnston et al. 1994) and the value of such hindcast skill assessments has 
recently been called into question by Risbey et al. (2021). An alternative is the use of retro-
active approaches (e.g., Mason and Stephenson 2008), which mimic the “real-time setting” 
mentioned by Barnston et al. (1994) but require long time records. As the NMME continues, 
the database of independent forecasts grows, potentially providing an opportunity to assess 
the true impact of postprocessing methods on forecast skill.

Finally, new modeling and computational techniques are emerging that will be relevant 
for the NMME in its second decade. Higher resolution models have been tested in the NMME 
protocol, with some promising results using a 0.5° atmosphere and 0.1° ocean suggesting 
improved prediction of precipitation (Infanti and Kirtman 2019; Siqueira et al. 2021). Some 
recent studies have explored machine learning applications of NMME, including convolutional 
Gaussian process (Wang et al. 2021), neural networks (Pakdaman et al. 2020), and wavelet 
methods (Xu et al. 2019). As the number of recently published studies cited in this paper  
illustrates, NMME research and development is only accelerating, and we look forward to 
new applications and new discoveries in the second decade.

Acknowledgments. The NMME project and data dissemination is supported by NOAA, NSF, NASA, 
and DOE. The authors appreciate the extensive work of NOAA, IRI, and NCAR personnel in creating, 
updating, and maintaining the NMME archive, and the many NMME team members at modeling 
centers who develop and maintain the models and have delivered their forecasts on time every month 
for more than a decade. Á. G. M. was partially supported by the NOAA Grants NA18OAR4310275, 
NA18OAR4310339, the FORMAS Arbo-Prevent Project, and the Columbia World Project “ACToday.”

Data availability statement. All NMME and verification data for this manuscript can be freely  
obtained from the database hosted at IRI (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 04:19 PM UTC

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y A P R I L  2 0 2 2 E991

Appendix: NMME data access
NMME monthly mean data resources are available at the Climate Prediction Center:

• NMME real-time monthly and seasonal forecast images for temperature, precipitation, and 
sea surface temperature: www.cpc.ncep.noaa.gov/products/NMME/

• Real-time forecast anomaly and probability data in netCDF format: ftp://ftp.cpc.ncep.noaa.
gov/NMME/

• Regionalized NMME forecasts images, archive, and data downloads, including binary and 
CPT-compatible (text) formats: www.cpc.ncep.noaa.gov/products/international/nmme/nmme.shtml

NMME monthly mean data resources are available at the IRI:

• Archived hindcast and real-time data in netCDF format at the IRI Data Library: http://iridl.
ldeo.columbia.edu/SOURCES/.Models/.NMME/. Includes years available, links to model docu-
mentation, spatial and temporal subsetting capability, and viewing options.

• The Climate Predictability Tool: a software package for constructing a seasonal climate 
forecast model, performing model validation, and producing forecasts given updated data. 
Provides seamless access to NMME: https://iri.columbia.edu/our-expertise/climate/tools/cpt/

NMME monthly and daily data available for an expanded set of variables (1982–2010 only) 
are available at the NCAR Climate Data Gateway:

• www.earthsystemgrid.org/search.html?Project5NMME

NMME daily data (2011–present only) are available at NOAA National Centers for Environ-
mental Information (NCEI) for CCSM4, CFSv2, CanCM3/4, GEOS-5, and GEM-NEMO (2019–
present only):

• www.ncei.noaa.gov/products/weather-climate-models/north-american-multi-model
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